The Konigsberg Bridge Problem

Problem 1: Consider the following layout in $K \backslash$ "\{o\}nigsburg, Prussia:

Is there a route through the city that crosses each bridge exactly once?

There are two ways we can try to figure out the answer:

1. If we think such a route exists, then \qquad we should find an example
2. If we think such a route does not exist, then __ we must prove it

Which method is easier? \qquad \#1 Does that mean that method is correct? \qquad No Using the maps on the next page, try the easier method for a few minutes, and see what you get.

Try several different routes until you get a solution, or until you think a solution doesn't exist.

Answer to Problem 1: No. (Euler, 1736)
To see this, we can view the map of Konigsburg as a graph. Each land mass is represented by a vertex, and each bridge is represented by an edge. A route through the graph that uses an edge at most one time is called a trail.

The steps of the claim and proof are posted below, but in the wrong order. Unscramble the steps to obtain a complete and correct claim and proof of the problem.

1. Proof:
2. Call this graph G. Hence, we see that G consists of \qquad vertices and \qquad edges.
3. Claim:
4. There is no route through Konigsburg that traverses every bridge exactly once.
5. As a result, there cannot exist a trail in G that contains every edge of G.
6. Note that each vertex in G touches an \qquad number of edges.
7. It now suffices to prove the claim, "There is no trail in G that contains every edge of G."
8. However, each vertex in G touches an \qquad number of edges.
9. Hence, if T contains every edge in G, then T must have at least two vertices that touch an even number of edges in T.
10.
11. Except for possibly the beginning and ending vertices, every vertex in a trail T touches an (circle one) even/odd number of edges in T.
12. We represent the map of Konigsburg with a graph in the following way: draw a vertex for each land mass and an edge for each bridge.
13. This is because each middle vertex in T is entered by one edge and then exited by another.

Using the above reasoning, we can generalize the answer to Problem 1 as follows:
Proposition 2: _If a graph G has precisely zero or two vertices of odd degree, then there exists a trail containing every edge of G.

Using Proposition 2, which of the following graphs might contain a trail with every edge? For those that cannot, can you succinctly explain why? For those that might, can you find such a trail?

Were there any graphs where you expected to find a trail with every edge but didn't? \qquad What does this suggest?

Conjecture 3: If within a graph G there exists a trail containing every edge in G, then G has precisely zero or two vertices of odd degree.

Combining Proposition 2 and Conjecture 3, can we make an even stronger conjecture?

Conjecture 4: A graph G has precisely zero or two vertices of odd degree if and only if there exists a trail containing every edge of G.

We'll revisit this topic later in the semester...

Homework (due Monday): Writing Assignment \#1

